On the modified fractional Korteweg–de Vries and related equations

نویسندگان

چکیده

Abstract We consider in this paper modified fractional Korteweg–de Vries and related equations (modified Burgers–Hilbert Whitham). They have the advantage with respect to usual KdV equation a defocusing case different dynamics. will distinguish weakly dispersive where phase velocity is unbounded for low frequencies tends zero at infinity strongly vanishes origin goes infinity. In former case, nonlinear hyperbolic effects dominate large data, leading possibility of shock formation though manifest small initial data scattering possible. latter finite time blow-up possible focusing but not formation. global existence expected energy subcritical while supercritical case. establish rigorously shocks location being explicitly computed most results on are derived via numerical simulations, solutions. Moreover, result can be extended some generalized nonlinearity. also comment briefly BBM versions those equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Time-Fractional Coupled-Korteweg-de-Vries Equations

and Applied Analysis 3 Subject to the initial condition D α−k 0 U (x, 0) = f k (x) , (k = 0, . . . , n − 1) , D α−n 0 U (x, 0) = 0, n = [α] , D k 0 U (x, 0) = g k (x) , (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (11) where ∂α/∂tα denotes the Caputo or Riemann-Liouville fraction derivative operator, f is a known function, N is the general nonlinear fractional differential operator, a...

متن کامل

Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations

Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...

متن کامل

On Solitary-Wave Solutions for the Coupled Korteweg – de Vries and Modified Korteweg – de Vries Equations and their Dynamics

which can be considered as a coupling between the KdV (with respect to u) and the mKdV (with respect to v) equations. The coupled KdV-mKdV equations were proposed by Kersten and Krasil’shchik [1] and originate from a supersymmetric extension of the classical KdV [2]. It also can be considered as a coupling between the KdV and mKdV equations: By setting v = 0 we obtain the KdV equation ut + uxxx...

متن کامل

The Improved Fractional Sub-equation Method and Its Applications to Nonlinear Fractional Partial Differential Equations

The fractional derivatives in the sense of modified Riemann-Liouville derivative and the improved fractional sub-equation method are employed for constructing the exact solutions of nonlinear fractional partial differential equations. By means of this method, the space-time fractional generalized Hirota-Satsuma coupled Kortewegde Vries equations are successfully solved. As a result, three types...

متن کامل

the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology

abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2022

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/ac4814